司廷

时间:2010-07-01浏览:22089

     

廷 教授

     中国科学技术大学近代力学系

     中国科学技术大学生物医学工程中心

     

电话: 0551-63606847

     Email: tsi@ustc.edu.cn

     主页:http://staff.ustc.edu.cn/~tsi


个人简介:

    司廷,中国科学技术大学教授、博士生导师,国家重大人才工程特聘教授,先进气动力热预测与推进技术联合创新中心副主任,挂职担任工程科学学院副院长。2000年考入中国科大,2004年理论与应用力学学士,2009年流体力学博士,是中国科学院院长奖、郭永怀奖、安徽省品学兼优毕业生获得者;之后从事博士后研究工作,2012年起担任中国科大特任副教授、副教授,2018年绿色通道晋升特任教授,曾于2012年及2014-2016年在美国俄亥俄州立大学访问交流。主要从事高速界面流动、微纳尺度流动等方面的基础科学问题和关键核心技术研究;创建表界面流体物理实验室,是中国科大高速流动与推进研究中心以及生物医学工程中心的学术带头人之一;已主持国家重大科研仪器研制、基金委优青、中组部青年拔尖人才、中国科学院青促会优秀会员等项目;发表重要期刊论文150余篇,其中流体力学著名两刊JFM 22篇、PoF 27篇;研制多套先进的实用化仪器和实验设备,授权国家专利20余项;获中国力学学会青年科技奖、安徽省教坛新秀、安徽省创新创业优秀指导老师奖、中国科大王宽诚育才奖和困学守望教学奖等奖项;以第二完成人获得教育部自然科学奖二等奖、中国力学学会自然科学奖二等奖。担任中国力学学会激波与激波管专业委员会委员兼秘书长、流体力学专业委员会微纳尺度流动专业组组长、力学名词审定工作委员会委员,中国空气动力学会科学传播和普及工作委员会委员,安徽省力学学会理事、青年工作委员会主任委员,担任国际期刊JMES、BMC Cancer副主编和多个期刊编委。


教育经历:

  •  2000.9~2004.7中国科学技术大学近代力学系,理论与应用力学学士

  •  2004.9~2009.6中国科学技术大学近代力学系,流体力学 博士


工作经历:

  •  2009.6~2012.2中国科学技术大学,博士后

  •  2012.3~2012.8美国The Ohio State University,访问学者

  •  2014.8~2016.4美国The Ohio State University,访问教授

  •  2012.2~至今   中国科学技术大学近代力学系,特任副教授、副教授、特任教授,国家“优青”


研究兴趣:

主要从事实验流体力学、微纳尺度流动界面不稳定性、生物医学工程等方面的研究工作,具体包括:

  • 多介质微流体技术的基础和应用研究。利用流动聚焦、电雾化、电纺丝、微流控器件等多介质微流体技术制备复合微纳胶囊,一方面开展多介质微流体的理论建模、数值模拟和实验验证,另一方面开展微纳胶囊、液滴、颗粒的开发和应用

  • 流体力学界面不稳定性的基础研究。开发圆弧形汇聚激波产生技术、初始扰动界面生成技术以及流场观测技术,开展激波和界面的相互作用研究,实验与数值模拟以及理论相结合

  • 旋流卷吸技术基础和转化研究。利用旋转流体能够产生强大抽吸力的原理开发旋流卷吸技术,在抽排、分选、输运、离心、净化等工农业领域有应用前景,实现零接触、节能减排、环保等

  • 其他流体力学相关基础和应用问题研究。


主持项目:

  • 国家自然科学基金优秀青年科学基金项目,《实验流体力学》,2018-2020,负责人

  • 国家自然科学基金面上项目,《电场作用下同轴流动聚焦的复合射流不稳定性特性研究》2015-2018,负责人

  • 国家自然科学基金面上项目,《反射激波作用气体界面的精细流场结构和湍流混合实验研究》2013-2016负责人

  • 国家自然科学基金青年基金项目,《流动聚焦中带电同轴射流的不稳定性研究》2011-2013负责人

  • 财政部和教育部中央高校基本科研业务费,《界面不稳定性精细流场结构和湍流混合的实验研究》2011-2012负责人

  • 博士后科学基金面上资助,《流动聚焦中非牛顿流体带电射流的不稳定性研究》2010-2011负责人


代表性论文:

  • Measurement of a Richtmyer-Meshkov instability at an air-SF6 interface in a semiannular shock tube. Physical Review Letters, 119: 014501, 2017.

  • On the interaction of a planar shock with a three-dimensional light gas cylinder. Journal of Fluid Mechanics, 828: 289-317. 2017.

  • Experimental study on a sinusoidal air/SF6 interface accelerated by a cylindrically converging shock. Journal of Fluid Mechanics, 826: 819-829. 2017.

  • The Richtmyer-Meshkov instability of a ‘V’ shaped air/SF6 interface. Journal of Fluid Mechanics, 802: 186-202, 2016.

  • On the interaction of a planar shock with an SF6 polygon. Journal of Fluid Mechanics, 773: 366-394, 2015.

  • Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder. Journal of Fluid Mechanics, 784: 225-251, 2015.

  • On the interaction of a planar shock with a light polygonal interface. Journal of Fluid Mechanics, 757: 800-816, 2014.

  • The Richtmyer-Meshkov instability of a three-dimensional air/SF6 interface with a minimum-surface feature. Journal of Fluid Mechanics (Rapids), 722(R2): 1-11, 2013.

  • Modes in flow focusing and instability of coaxial liquid-gas jets. Journal of Fluid Mechanics, 629: 1-23, 2009.

  • Numerical study on droplet generation in axisymmetric flow focusing upon actuation. Physics of Fluids, 30: 012111, 2018.

  • Manipulation of three-dimensional Richtmyer-Meshkov instability by initial interfacial principal curvatures. Physics of Fluids, 29: 032106, 2017.

  • Reflection of cylindrical converging shock wave at an air/helium gaseous interface. Physics of Fluids, 29: 016102, 2017.

  • Interaction of cylindrically converging diffracted shock with uniform interface. Physics of Fluids, 29: 086101, 2017.

  • The Richtmyer-Meshkov instability of a ‘V’ shaped air/helium interface subjected to a weak shock. Physics of Fluids, 28: 082104, 2016.

  • Reflection of cylindrical converging shock wave over a plane wedge. Physics of Fluids, 28: 086101, 2016.

  • A semi-annular shock tube for studying cylindrically converging Richtmyer-Meshkov instability. Physics of Fluids (Letter), 27: 091702, 2015.

  • Temporal instability of coflowing liquid-gas jets under an electric field. Physics of Fluids, 26: 054101, 2014.

  • Experimental investigation of reshocked spherical gas interfaces. Physics of Fluids, 24: 054101, 2012.

  • Parametric study of cylindrical converging shock waves generated based on shock dynamics theory. Physics of Fluids, 24: 026101, 2012.

  • On the evolution of spherical gas interfaces accelerated by a planar shock wave. Physics of Fluids, 23: 084104, 2011.

  • Spatial instability of coflowing liquid-gas jets in capillary flow focusing. Physics of Fluids, 22: 112105, 2010.  

  • Multiplex coaxial flow focusing for producing multicompartment Janus microcapsules with tunable material compositions and structural characteristics. Lab on a Chip, 17: 3168-3175, 2017.

  • Microencapsulation of indocyanine green for potential applications in image-guided drug delivery. Lab on a Chip (Communications), 15: 646-649, 2015.

  •  Photopolymerization of complex emulsions with irregular shapes fabricated by multiplex coaxial flow focusing. Applied Physics Letters, 112: 071601, 2018.

  • Steady cone-jet mode in compound-fluidic electro-flow focusing for fabricating multicompartment microcapsules. Applied Physics Letters(Cover paper), 108: 021601, 2016.

  • Optical droplet vaporization of nanoparticle-loaded stimuli-responsive microbubbles. Applied Physics Letters, 108: 111109, 2016.

  • Principal curvature effects on the early evolution of three-dimensional single-mode Richtmyer-Meshkov instabilities. Physical Review E, 93: 023110, 2016.

  • Richtmyer-Meshkov instability of a three-dimensional SF6-air interface with a minimum-surface feature. Physical Review E, 93: 013101, 2016.

  • Simultaneous measurements of geometric and viscoelastic properties of hydrogel microbeads using continuous-flow microfluidics with embedded electrodes. Small, 13: 1702821, 2017.

  • Ultrasound mediated delivery of oxygen and LLL12 loaded stimuli responsive microdroplets for the treatment of hypoxic cancer cells. Scientific Reports, 7: 44908, 2017.

  • Microfluidic fabrication of stimuli-responsive microdroplets for acoustic and optical droplet vaporizations. Journal of Materials Chemistry B, 4: 2723-2730, 2016.

4